Real-time in vivo computed optical interferometric tomography
نویسندگان
چکیده
High-resolution real-time tomography of scattering tissues is important for many areas of medicine and biology1-6. However, the compromise between transverse resolution and depth-of-field in addition to low sensitivity deep in tissue continue to impede progress towards cellular-level volumetric tomography. Computed imaging has the potential to solve these long-standing limitations. Interferometric synthetic aperture microscopy (ISAM)7-9 is a computed imaging technique enabling high-resolution volumetric tomography with spatially invariant resolution. However, its potential for clinical diagnostics remains largely untapped since full volume reconstructions required lengthy postprocessing, and the phase-stability requirements have been difficult to satisfy in vivo. Here we demonstrate how 3-D Fourier-domain resampling, in combination with high-speed optical coherence tomography (OCT), can achieve high-resolution in vivo tomography. Enhanced depth sensitivity was achieved over a depth-of-field extended in real time by more than an order of magnitude. This work lays the foundation for high-speed volumetric cellular-level tomography.
منابع مشابه
Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography.
Over the years, many computed optical interferometric techniques have been developed to perform high-resolution volumetric tomography. By utilizing the phase and amplitude information provided with interferometric detection, post-acquisition corrections for defocus and optical aberrations can be performed. The introduction of the phase, though, can dramatically increase the sensitivity to motio...
متن کاملTwo-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura.
BACKGROUND Methods for obtaining real-time in vivo histologic resolution by means of noninvasive endoscopic optical imaging would be a major advance for thoracic surgical diagnostics and treatment. Optical coherence tomography is a rapidly evolving technology based on near-infrared interferometry that might provide these capabilities. The purpose of this study is to investigate the feasibility ...
متن کاملStability in computed optical interferometric tomography (Part II): in vivo stability assessment.
Stability is of utmost importance to a wide range of phase-sensitive processing techniques. In Doppler optical coherence tomography and optical coherence elastography, in addition to defocus and aberration correction techniques such as interferometric synthetic aperture microscopy and computational/digital adaptive optics, a precise understanding of the system and sample stability helps to guid...
متن کاملComputed optical interferometric tomography for high-speed volumetric cellular imaging.
Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of intere...
متن کاملNanoparticles for multimodal in vivo imaging in nanomedicine
While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within th...
متن کامل